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Abstract
The specific heat of the two-dimensional ±J Ising model has been investigated
by the numerical transfer matrix method and Monte Carlo simulations from a
new point of view. The region where a part of the specific heat takes a negative
value has been investigated, which is characteristic of frustrated systems and
reflects the non-trivial degeneracy of the ground state. The region mentioned
above is found to be fairly large in the p–T plane ( p is the concentration of
the ferromagnetic bond and T is the temperature). Moreover, it includes the
Nishimori line. Namely, it includes a part of the paramagnetic–ferromagnetic
phase boundary, on which the specific heat cannot diverge. The present
result indicates that the specific heat does not diverge at least on a part of
the paramagnetic–ferromagnetic phase boundary above the multicritical point,
which is in conflict with previous results.

PACS numbers: 75.50.Lk, 02.70.Lq, 64.60.Cn, 05.50.+q

1. Introduction

To elucidate the nature of critical phenomena of two-dimensional disordered Ising models
has been a subject of long-standing interest. Harris [1] concluded from a heuristic argument
that the nature of critical phenomena of a disordered system becomes different from that of
the corresponding pure system when the critical exponent of the specific heat, α, of the pure
system is positive, while it remains the same when α < 0. Since the two-dimensional pure
ferromagnetic Ising model is the marginal case, namely α = 0, many authors have investigated
the properties of critical phenomena of the two-dimensional disordered Ising models [2–14].

For the two-dimensional unfrustrated random Ising models, many authors concluded that
the specific heat diverges double logarithmically at the paramagnetic–ferromagnetic phase
boundary [2–9], though there are several results which insist that the specific heat remains
finite [1, 10–12].
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For the two-dimensional ±J Ising model which corresponds to the two-dimensional
frustrated random Ising model, a few results exist. Inoue [13] investigated the system-size
dependence of the height of the peak of the specific heat at p � 0.94, where p is the
concentration of the ferromagnetic bond (0 � p � 1), and concluded that the logarithmic
divergence of the specific heat at the paramagnetic–ferromagnetic phase boundary is most
probable in the same way as the pure case. Reis et al [14] investigated the system-size
dependence of the correlation length at p � 0.92, and concluded that logarithmic corrections
do not play a role in contrast with the unfrustrated disordered systems. They concluded,
however, that the specific heat diverges at most logarithmically. Namely, they could not
completely exclude the possibility of the double logarithmic divergence of the specific heat.

On the other hand, there exists the Nishimori line, which is defined by the equation
exp(2J/kBT ) = p/(1 − p). (kB is the Boltzmann constant, which we put that kB = 1 from
now on.) On the Nishimori line, several rigorous results have been derived [15]. Particularly,
it has been proved that the specific heat remains finite.

From the renormalization group approach, it is generally believed that, for the two-
dimensional ±J Ising model, there exist two fixed points on the paramagnetic–ferromagnetic
phase boundary above the multicritical point, namely the pure ferromagnetic fixed point
and the multicritical fixed point [16, 17], and there seems to be no random fixed point in
contrast with the three-dimensional case [18]. (In this paper, we use the phrase ‘multicritical
point’ as the crossing point of the ferromagnetic–nonferromagnetic phase boundary and the
Nishimori line, though there seems to be no spin glass phase in the two-dimensional case.)
The pure ferromagnetic fixed point is stable, and the multicritical fixed point is unstable.
Thus, the critical phenomena on the paramagnetic–ferromagnetic phase boundary above the
multicritical point are governed by the pure ferromagnetic fixed point. Therefore, the critical
exponent, α, should be zero on the whole paramagnetic–ferromagnetic phase boundary above
the multicritical point. The fact mentioned above, however, does not help to determine
the critical behaviour of the specific heat, since each of a logarithmic divergence, a double
logarithmic divergence and a cusp-like behaviour belongs to the case α = 0.

In this paper, we investigate the specific heat from a new point of view. We divide the
specific heat of a system into two parts, C1 and C2. (For detailed definitions of C1 and C2,
see section 2.) The value of C1 is easily found to be non-negative and remains finite at finite
temperature. On the other hand, the value of C2 becomes negative at T = 0 when the system
is frustrated and the ground state has non-trivial degeneracy. Since we can consider that
the negative value of C2 reflects the non-trivial ground state degeneracy, it is an interesting
problem to make it clear up to what temperature the property persists. It is noted that in order
that the specific heat may diverge, C2 should become infinite.

Thus, we investigate the region in the p–T plane where C2 takes a negative value for the
two-dimensional ±J Ising model. Our result shows that the region mentioned above is fairly
large in the p–T plane. Moreover, it includes the Nishimori line. Namely, the region includes
a part of the paramagnetic–ferromagnetic phase boundary above the multicritical point. In
that region, the specific heat cannot diverge.

The present result indicates that the specific heat does not diverge at least on a part of
the paramagnetic–ferromagnetic phase boundary near and above the multicritical point. The
result is not directly in conflict with previous results [13, 14] which insist that the specific heat
diverges at most logarithmically at the paramagnetic–ferromagnetic phase boundary near the
pure ferromagnetic case (p � 0.92), since the range of the concentration of the calculations
does not overlap. It is natural, however, to think that the nature of the phase transition
does not change on the paramagnetic–ferromagnetic phase boundary above the multicritical
point. Thus, we insist that the specific heat of the two-dimensional ±J Ising model does
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not diverge on the whole paramagnetic–ferromagnetic phase boundary above the multicritical
point, though we cannot exclude the possibility that there exists a singular point on the
paramagnetic–ferromagnetic phase boundary which separates the nature of the specific heat.

2. The model and the method

We consider the two-dimensional ±J Ising model on a square lattice with only nearest
neighbour interactions. The Hamiltonian is written as follows:

H = −
∑
(ij)

JijSiSj (1)

where Si = ±1, and the summation of (ij) runs over all the nearest neighbours. Each Jij is
determined according to the following probability distribution:

P(Jij ) = pδ(Jij − J ) + (1 − p)δ(Jij + J ). (2)

In this paper, we put that J = 1.
The specific heat per bond, C(p, T ), is written as follows:

C(p, T ) = 1

NB

∂

∂T
[〈E〉T ]p = 1

NB

∂

∂T

∑
(ij)

[〈−JijSiSj 〉T ]p (3)

where 〈· · ·〉T denotes the thermal average in a given bond configuration, {Jij }, at temperature
T, [· · ·]p denotes the configurational average at the ferromagnetic bond concentration, p, and
NB is the number of bonds.

Now, we divide the specific heat of the system, C(p, T ), into two parts, C1(p, T ) and
C2(p, T ):

C(p, T ) = C1(p, T ) + C2(p, T ) (4)

where

C1(p, T ) = 1

NB

∑
(ij)

∂

∂Tij

[〈−Jijσiσj 〉{T }]p|{T }=T (5)

and

C2(p, T ) = 1

NB

∑
(ij)

∑
lm�=ij

∂

∂Tlm

[〈−Jijσiσj 〉{T }]p|{T }=T . (6)

Here, we introduce technically, Tij , the local temperature of the bond, Jij . Namely, C1(p, T )

is considered to be the configurational average of the change of the local energy, −〈Jijσiσj 〉{T },
when we infinitesimally increase the corresponding local temperature, Tij . On the other hand,
C2(p, T ) is considered to be the configurational average of the change of the local energy,
−〈Jijσiσj 〉{T }, when we infinitesimally increase the temperature, Tlm, which surrounds the
local bond, Jij .

It is easily calculated that

C1(p, T ) = 1

NBT 2

∑
(ij)

(
1 − [〈σiσj 〉2

T

]
p

)
. (7)

Namely, C1(p, T ) has an upper bound;

C1(p, T ) � 1

T 2
. (8)

Therefore, at finite temperature, in order that the specific heat may diverge, C2(p, T ) should
become infinite.
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Figure 1. The temperature dependence of C(p, T ), C1(p, T ) and C2(p, T ) for L = 4 at p = 0.8.

Now, we consider the case at zero temperature. At zero temperature, the specific heat
C(p, 0) becomes zero. When there is no non-trivial degeneracy in the ground state of the
system, each

[〈σiσj 〉2
T

]
p

= 1. Namely, C1(p, 0) becomes zero. Thus, C2(p, 0) also becomes

zero. On the other hand, when the ground state has non-trivial degeneracy, some of
[〈σiσj 〉2

T

]
p

become less than 1. Namely, C1(p, 0) becomes positive infinite. Thus, C2(p, 0) becomes
negative infinite in this case. The negative value of C2(p, T ) at finite temperature may
be considered to be one of the influences of the non-trivial ground state degeneracy of the
frustrated system. Thus, it is an interesting problem to make it clear up to what temperature
the property persists. Therefore, in the following sections, we investigate the region in the
p–T plane where C2(p, T ) takes the negative value for the two-dimensional ±J Ising model.

In the actual calculations, it is rather difficult to estimate the value of C2(p, T ) directly.
On the other hand, C(p, T ) can be estimated from the fluctuation of the energy of the
system, namely

[〈E2〉T − 〈E〉2
T

]
p
, and C1(p, T ) can be estimated from the nearest neighbour

correlations. Therefore, we have estimated the values of C(p, T ) and C1(p, T ) directly by
the transfer matrix method and Monte Carlo simulations, and the value of C2(p, T ) has been
estimated indirectly from the equation C2(p, T ) = C(p, T ) − C1(p, T ).

3. Results by the numerical transfer matrix method

In this section, we investigate the region in the p–T plane where C2(p, T ) takes a negative
value by the numerical transfer matrix method. We have calculated for the lattice size, L =
4–16, at the bond concentration, p = 0.65–0.95. In the calculations, we take the free boundary
condition, and the configurational average for 104–105 bond configurations.

Figure 1 shows the temperature dependence of C(p, T ), C1(p, T ) and C2(p, T ) for L = 4
at p = 0.8. We can see that C2(p, T ) takes a negative value in the low temperature region.
We have estimated the temperature, T0(L, p), where C2(p, T ) takes the value zero for L =
4–16 at p = 0.65–0.95. Figure 2 shows the temperature dependence of C2(p, T ) near the zero
point for L = 14 at p = 0.9. From the figure, we have estimated the temperature of the zero
point, T0(L = 14, p = 0.9) = 1.2764(14). The estimated values of T0(L, p) for various L
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Figure 2. The temperature dependence of C2(p, T ) near the zero point for L = 14 at p = 0.9.

Table 1. The estimated value of T0(L, p). TN(p) is the temperature of the Nishimori line at p.

L p = 0.65 p = 0.7 p = 0.75 p = 0.8 p = 0.85 p = 0.9 p = 0.95

4 3.88(6) 2.85(5) 2.222(16) 1.803(8) 1.4968(28) 1.2553(13) 1.0303(20)
6 3.88(6) 2.845(35) 2.220(12) 1.8045(45) 1.5025(25) 1.2672(12) 1.0517(12)
8 3.88(12) 2.835(65) 2.234(22) 1.8065(85) 1.5020(40) 1.2722(22) 1.0650(20)

10 3.90(10) 2.885(45) 2.230(12) 1.8035(75) 1.5045(30) 1.2744(26) 1.0650(20)
12 3.88(4) 2.83(5) 2.220(14) 1.8035(65) 1.5038(25) 1.2759(19) 1.0823(18)
14 3.88(4) 2.862(42) 2.225(14) 1.8055(35) 1.5050(25) 1.2764(14) 1.0880(20)
16 3.89(7) 2.845(30) 2.225(15) 1.803(7) 1.5047(19) 1.2768(18) 1.0932(12)
TN(p) 3.2308 2.3604 1.8205 1.4427 1.1530 0.9102 0.6792

and p are shown in table 1. The accuracy of the values of T0(L, p) becomes worse as the
concentration, p, becomes small, since the gradient of C2(p, T ) near the zero point becomes
small.

We can see that, at each concentration, p, the size dependence of the values of T0(L, p)

is very small, and the values are fairly large compared to the value of TN(p), the temperature
of the Nishimori line at p.

We have no definite principle to estimate the value of T0(p) which is the extrapolated
value of T0(L, p) to L → ∞. No clear size dependence, however, can be seen at p =
0.65–0.8. Thus, we perform naive extrapolation to L → ∞ in this region. It can be seen that
the value of T0(L, p) slightly increases as L increases at p = 0.85–0.95. We have found that
the extrapolation by the L−2-law works fairly well at p = 0.85 and p = 0.9. Figure 3
shows a plot of T0(L, p) versus 1/L2 at p = 0.9, where we have estimated that T0(p =
0.9) = 1.278(3). We have also found that the extrapolation by the L−1/2-law works fairly
well at p = 0.95. The estimated values of T0(p) for various p are shown in table 2. Strictly
speaking, we cannot justify the above extrapolation at each p. We can say, however, that the
extrapolated values, T0(p), might not change drastically even if we use other extrapolation
laws, and there seems to be no possibility that the value of T0(p) becomes equal to or smaller
than the temperature of the Nishimori line at each p.
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Figure 3. A plot of T0(L, P ) versus 1/L2 at p = 0.9.

Table 2. The estimated value of T0(p) for various p. TN(p) is the temperature of the Nishimori
line at p.

p T0(p) TN(p)

0.65 3.88(6) 3.2308
0.7 2.845(65) 2.3604
0.75 2.217(19) 1.8205
0.8 1.805(9) 1.4427
0.85 1.506(3) 1.1530
0.9 1.278(3) 0.9102
0.95 1.154(3) 0.6792

Figure 4 shows the estimated values of T0(p) for various p in the p–T plane, which are
denoted by black squares. The dashed line denotes the Nishimori line, and the open circles
denote the paramagnetic–ferromagnetic phase boundary above the multicritical point [19].
We can see that the region where C2(p, T ) takes the negative value is fairly large. We can also
see that the region mentioned above contains the Nishimori line. There are several numerical
calculations about the paramagnetic–ferromagnetic phase boundary of the two-dimensional
±J Ising model [13, 19–22, 27]. It is noted that all the calculations are almost consistent
with each other and they show that, above the multicritical point, the concentration, p, of
the phase boundary increases as the temperature increases. Thus, a part of the paramagnetic–
ferromagnetic phase boundary is included in the region where C2(p, T ) takes a negative value.
In that region, the specific heat cannot diverge. Namely, the specific heat does not diverge
at least on a part of the paramagnetic–ferromagnetic phase boundary above the multicritical
point.

4. Monte Carlo simulations near the paramagnetic–ferromagnetic phase boundary

In order to elucidate the region where C2(p, T ) takes a negative value near the paramagnetic–
ferromagnetic phase boundary, we have performed Monte Carlo simulations for larger lattices,
L = 31–121, at p = 0.88–0.92. In the calculations, we take the skew boundary condition in
one direction and the periodic boundary condition in the other direction.
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Figure 4. The estimated values of T0(p) for various p in the p–T plane, which are denoted
by black squares. The dashed line denotes the Nishimori line, and the open circles denote the
paramagnetic–ferromagnetic phase boundary above the multicritical point.

Table 3. The condition of the Monte Carlo simulation.

p L MCS Nb

0.88 31 400 000 240
61 800 000 96

121 800 000 120
0.89 31 600 000 240

61 5 000 000 120
121 16 000 000 80

0.9 31 800 000 320
61 14 000 000 160
91 30 000 000 64

0.91 31 1 400 000 480
61 10 000 000 96

121 20 000 000 32
0.92 31 600 000 720

61 1 400 000 120
121 800 000 64

The condition of the simulation is shown in table 3. MCS denotes the Monte Carlo
step of the simulation, which is chosen to be larger than 20τ , where the relaxation time, τ ,
is evaluated by the statistical time-independent method [23], and Nb is the number of bond
configurations.

The temperature dependence of C2(p, T ) near the zero point for L = 91 at p = 0.9 is
shown in figure 5, where we have estimated that T0(L = 91, p = 0.9) = 1.2765(45). The
estimated values of T0(L, p) for various L and p are shown in table 4.

Though T0(L, p) takes similar values even if the lattice size, L, changes, we have
extrapolated the values of T0(L, p) to L → ∞ by the L−2-law. We show the estimated
values of T0(p) for various p in table 5 with the temperature of the Nishimori line, TN(p).

The results are also shown in figure 6. The black circles and squares denote T0(p)

evaluated by the Monte Carlo simulations and by the numerical transfer matrix method,
respectively. The dashed line denotes the Nishimori line, and the open circles denote the
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Figure 5. The temperature dependence of C2(p, T ) near the zero point for L = 91 at p = 0.9.

Table 4. The estimated values of T0(L,p) for various L and p.

p L = 31 L = 61 L = 91 L = 121

0.88 1.3485(55) 1.3535(45) 1.3555(35)
0.89 1.3075(45) 1.303(5) 1.3055(55)
0.9 1.286(4) 1.2775(45) 1.2765(45)
0.91 1.269(4) 1.2665(45) 1.2685(45)
0.92 1.249(4) 1.2485(45) 1.2485(35)

Table 5. The values of T0(p) for various p. TN(p) is the temperature of the Nishimori line at p.

p T0(p) TN(p)

0.88 1.355(5) 1.0038
0.89 1.3045(55) 0.9566
0.9 1.275(5) 0.9102
0.91 1.267(5) 0.8644
0.92 1.2485(55) 0.8188

paramagnetic–ferromagnetic phase boundary above the multicritical point [16]. It can be seen
that both results by the numerical transfer matrix method and Monte Carlo simulations are
consistent with each other.

The crossing point of the paramagnetic–ferromagnetic phase boundary and the boundary
of the region where C2(p, T ) takes a negative value has been estimated to be 0.8985(15).
Therefore, we conclude that the specific heat cannot diverge on the paramagnetic–
ferromagnetic phase boundary at least for pc � p � 0.8985(15), where pc is the concentration
of the multicritical point. There are many numerical estimates of pc: 0.8905(5) [14], 0.8872(8)
[24], 0.886(3) [25], 0.8906 [26] and 0.8907(2) [27]. Recently, there has been a conjecture
about the exact value of pc, which insists that pc = 0.889 972 [28].

At first glance, the value 0.8985 is very close to several estimated values of pc. The values
of T0(p) and TN(p), however, are distinctly different at any value of p, which can be seen
from tables 2 and 5. Thus, there seems to be no possibility that the value of T0(p) becomes
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Figure 6. The estimated values of T0(p) for various p in the p–T plane. The black circles and
squares denote the values of T0(p) by the Monte Carlo simulations and by the numerical transfer
matrix method, respectively. The dashed line denotes the Nishimori line, and the open circles
denote the paramagnetic–ferromagnetic phase boundary above the multicritical point.

equal to or smaller than the value of TN(p) at each p, even if, for example, other extrapolation
laws have been used. Therefore, we stress that the boundary of the region where C2(p, T )

takes a negative value has to cross the paramagnetic–ferromagnetic phase boundary distinctly
above the multicritical point in the p–T plane, namely, the concentration of the crossing point
mentioned above is definitely larger than the value of pc.

5. Conclusions

We have investigated the property of the specific heat of the two-dimensional ±J Ising model
by the numerical transfer matrix method and Monte Carlo simulations from a new point
of view. We have estimated the region where C2(p, T ) takes a negative value in the p–T
plane, which is one of the characteristics of the frustrated system, and reflects the non-trivial
degeneracy of the ground state. By the numerical transfer matrix method for L = 4–16, and
the Monte Carlo simulations for L = 31–121, the region has been found to be fairly large in
the p–T plane, which includes the Nishimori line. At present, we have no idea why the region
becomes so large and the boundary of the region follows closely the Nishimori line. It must
be noted, however, that the same feature is also seen in the three-dimensional ±J Ising model
from the preliminary result by Monte Carlo simulations.

Moreover, the region mentioned above includes a part of the paramagnetic–ferromagnetic
phase boundary, on which the specific heat cannot diverge. Thus, our results indicate that the
specific heat cannot diverge on the paramagnetic–ferromagnetic phase boundary at least near
and above the multicritical point. On the other hand, there are several works in the literature
which claim that, near the pure ferromagnetic point (p � 0.92), the specific heat diverges at
most logarithmically [13, 14]. Both results are not directly in conflict with each other, since the
range of the concentration of the calculations does not overlap. It is natural, however, to think
that the nature of the phase transition does not change on the paramagnetic–ferromagnetic
phase boundary above the multicritical point. In the literature, where the divergence of the
specific heat is insisted on, the change of the peak height of the specific heat of various
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lattice sizes was investigated [13, 14]. It is a very subtle problem whether the specific heat
diverges or remains finite, when the divergence is so weak as the logarithmic divergence. Our
extrapolation, however, is straightforward and the values of T0(p) might not change drastically
even when there exist other system-size corrections, and there seems to be no possibility that
the value of T0(p) becomes equal to or smaller than the temperature of the Nishimori line at
each p. Thus, we insist that the specific heat of the two-dimensional ±J Ising model does
not diverge on the whole range of the paramagnetic–ferromagnetic phase boundary above the
multicritical point, though we cannot exclude the possibility that a singular point exists on the
paramagnetic–ferromagnetic phase boundary, which separates the nature of the specific heat.
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